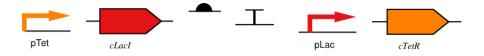
Generating SBML Models from SBOL

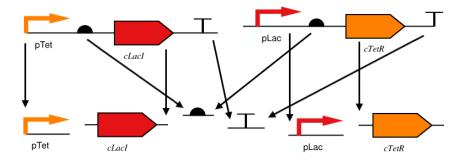
Nicholas Roehner

University of Utah

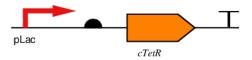

August 20, 2014

N. Roehner (University of Utah)

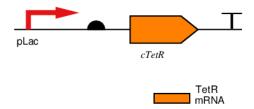
Generating SBML Models from SBOL


August 20, 2014

SBOL Version 1.1: Genetic Structure


- Specification of DNA components.
- Hierarchical composition of DNA components.

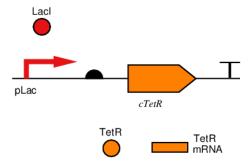
SBOL Version 1.1: Genetic Structure



- Specification of DNA components.
- Hierarchical composition of DNA components.

Proposal for SBOL Version 2.0: Genetic Structure

Proposal for SBOL Version 2.0: Genetic Structure

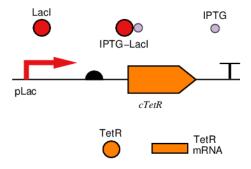


• RNA components (mRNA, tRNA, siRNA)

- Protein components
- Other Components

N. Roehner (University of Utah)

Proposal for SBOL Version 2.0: Genetic Structure

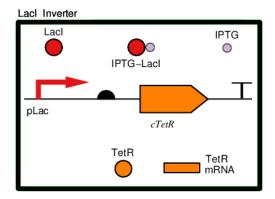


• RNA components

- Protein components (transcription factors, enzymes)
- Other Components

N. Roehner (University of Utah)

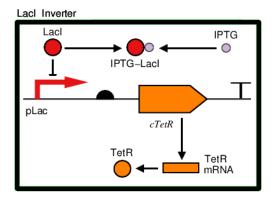
Proposal for SBOL Version 2.0: Non-Genetic Structure



- RNA components
- Protein components
- Other Components (small molecules, molecular complexes, light)

N. Roehner (University of Utah)

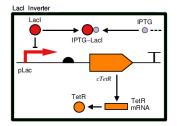
Generating SBML Models from SBOL

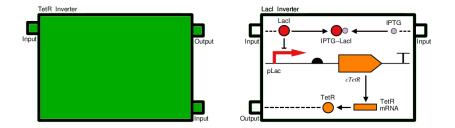

Proposal for SBOL Version 2.0: Qualitative Function

- Modules (logic gates, latches, oscillators, sensors, transducers, pathways, cascades)
- Interactions

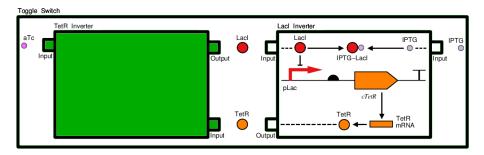
N. Roehner (University of Utah)

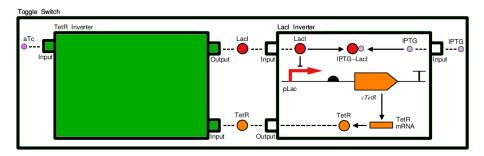
Proposal for SBOL Version 2.0: Qualitative Function


Modules


• Interactions (activation, repression, complex formation, transcription, translation, phosphorylation)

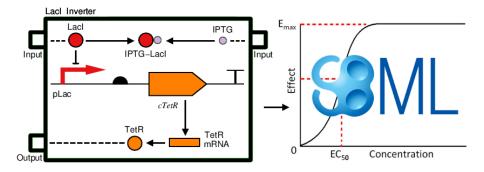
N. Roehner (University of Utah)



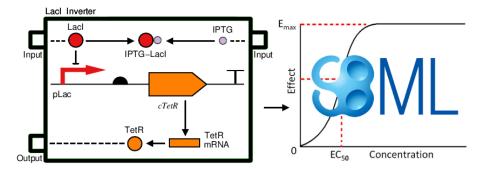


Ports

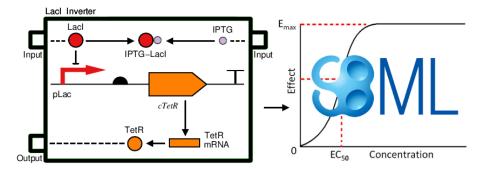
- Instantiation
- Port Mapping

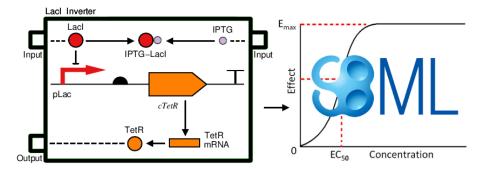


- Ports
- Instantiation
- Port Mapping

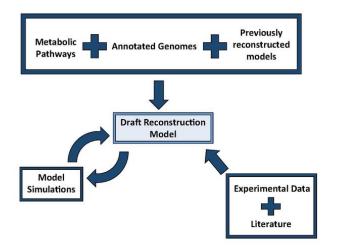


- Ports
- Instantiation
- Port Mapping


Proposal for SBOL Version 2.0: Quantitative Function


Models (SBML, CelIML, MATLAB)

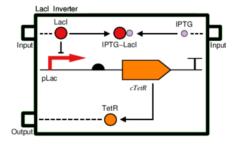
- Supplies quantitative models for analysis of synthetic genetic designs.
- Facilitates collaboration between biologists and engineers.
- Enables comparison of different models backed by same SBOL module.

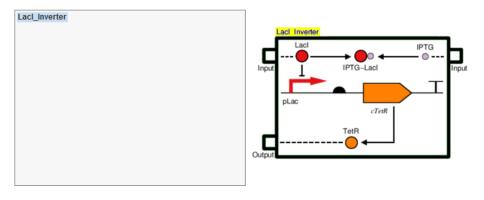


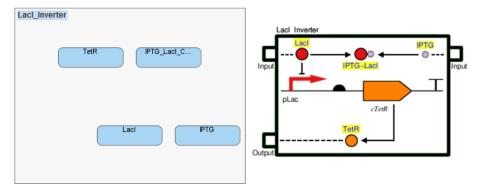
- Supplies quantitative models for analysis of synthetic genetic designs.
- Facilitates collaboration between biologists and engineers.
- Enables comparison of different models backed by same SBOL module.

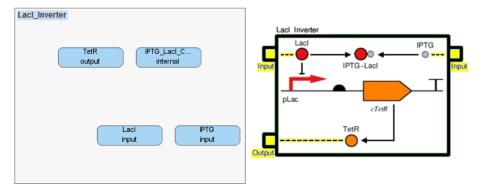
- Supplies quantitative models for analysis of synthetic genetic designs.
- Facilitates collaboration between biologists and engineers.
- Enables comparison of different models backed by same SBOL module.

Metabolic Reconstruction

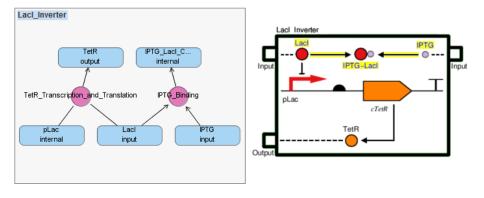


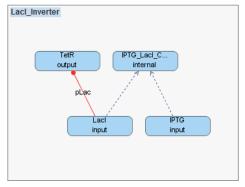

- Primary applications for metabolic reconstruction include:
 - Refinement of data on metabolic and signaling pathways in natural biological systems.
 - Forward engineering of metabolic and signaling pathways in synthetic biological systems.
- By contrast, our approach to model generation for synthetic biology:
 - Places greater emphasis on engineering genetic regulatory networks.
 - Operates on SBOL, a standard expressly developed for representing synthetic biological designs.

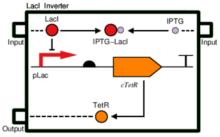

- Primary applications for metabolic reconstruction include:
 - Refinement of data on metabolic and signaling pathways in natural biological systems.
 - Forward engineering of metabolic and signaling pathways in synthetic biological systems.
- By contrast, our approach to model generation for synthetic biology:
 - Places greater emphasis on engineering genetic regulatory networks.
 - Operates on SBOL, a standard expressly developed for representing synthetic biological designs.

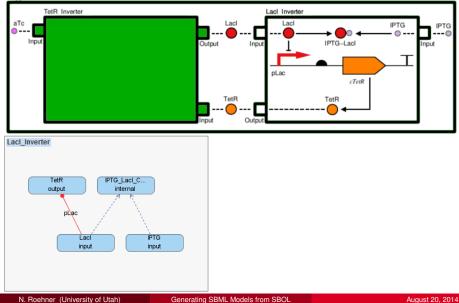

- Primary applications for metabolic reconstruction include:
 - Refinement of data on metabolic and signaling pathways in natural biological systems.
 - Forward engineering of metabolic and signaling pathways in synthetic biological systems.
- By contrast, our approach to model generation for synthetic biology:
 - Places greater emphasis on engineering genetic regulatory networks.
 - Operates on SBOL, a standard expressly developed for representing synthetic biological designs.

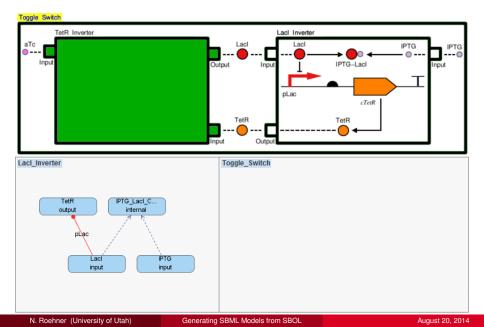

- Primary applications for metabolic reconstruction include:
 - Refinement of data on metabolic and signaling pathways in natural biological systems.
 - Forward engineering of metabolic and signaling pathways in synthetic biological systems.
- By contrast, our approach to model generation for synthetic biology:
 - Places greater emphasis on engineering genetic regulatory networks.
 - Operates on SBOL, a standard expressly developed for representing synthetic biological designs.

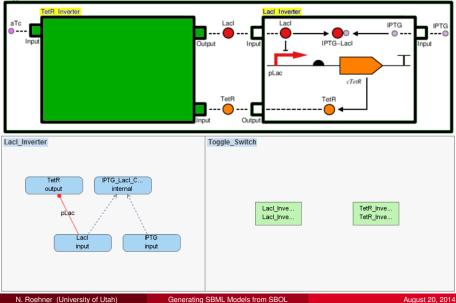




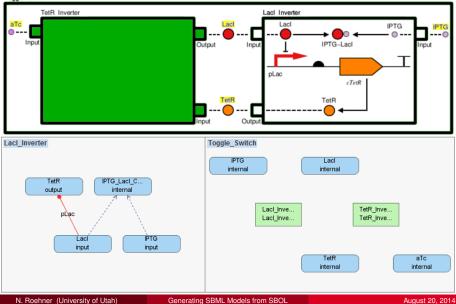


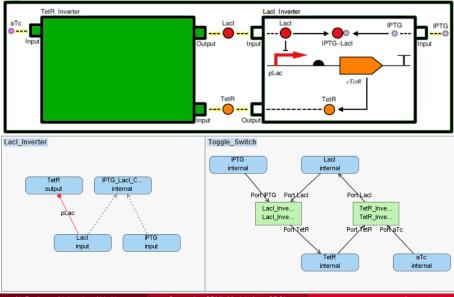






Toggle Switch




Toggle Switch

Toggle Switch

Toggle Switch

N. Roehner (University of Utah)

Generating SBML Models from SBOL

August 20, 2014

Kinetic Laws: Degradation

$rate(r_s) = k_d s$

Kinetic Laws: Complex Formation

$$\mathsf{rate}(r_s) = k_{c_f} \left(K_c^{|\mathsf{React}(s)|-2} \prod_{s' \in \mathsf{React}(s)} s' \right) - k_{c_f} s$$

$$\operatorname{rate}(r_{p}) = \begin{cases} \frac{n_{p}k_{o}n_{g}K_{o}n_{r}}{1+K_{o}n_{r}+\sum\limits_{s_{r}\in\operatorname{Rep}(p)}(K_{r}s_{r})^{n_{c}}} & |\operatorname{Act}(p)| = 0\\ \frac{n_{p}k_{b}n_{g}K_{o}n_{r}+n_{p}k_{a}n_{g}K_{oa}n_{r}\sum\limits_{s_{a}\in\operatorname{Act}(p)}(K_{a}s_{a})^{n_{c}}}{1+K_{o}n_{r}+\sum\limits_{s_{r}\in\operatorname{Rep}(p)}(K_{r}s_{r})^{n_{c}}+K_{oa}n_{r}\sum\limits_{s_{a}\in\operatorname{Act}(p)}(K_{a}s_{a})^{n_{c}}} & \text{otherwise} \end{cases}$$

Kinetic Parameters

Parameter	Symbol	Value	Units
Rate of degradation	k _d	0.0075	$\frac{1}{sec}$
Stoichiometry of production	n _p	10	unitless
Open complex production rate	k _o	0.05	$\frac{1}{sec}$
Basal production rate	k _b	0.0001	$\frac{1}{sec}$
Activated production rate	k _a	0.25	$\frac{1}{sec}$
Promoter count	ng	2	molecule
RNA polymerase binding equilibrium	Ko	0.033	1 molecule
Activated RNA pol. binding equilibrium	K _{oa}	1	<u>1</u> molecule
RNA polymerase count	n _r	30	molecule
Repression binding equilibrium	Kr	0.5	1 molecule
Activation binding equilibrium	Ka	0.0033	1 molecule
Stoichiometry of binding	n _c	2	unitless
Forward non-covalent binding rate	k _{cf}	0.05	1 molecule*sec
Non-covalent binding equilibrium	Kc	0.05	<u> </u>
Reverse non-covalent binding rate	k _{cr}	1	$\frac{1}{sec}$

- Mappings from SBOL to other model languages and frameworks will be developed for different design tasks.
- Development can be democratized with software tools for creating new mappings between qualitative SBOL and quantitative modeling standards.

- Mappings from SBOL to other model languages and frameworks will be developed for different design tasks.
- Development can be democratized with software tools for creating new mappings between qualitative SBOL and quantitative modeling standards.

Acknowledgments

Chris J. Myers

Nathan Barker

Hiroyuki Kuwahara

Kevin Jones

Tyler Patterson

Jason Stevens

Andrew Fisher

Curtis Madsen

Scott Glass

Nam Nguyen

Leandro Watanabe

Zhen Zhang

This work is supported by the National Science Foundation under Grants No. 0331270, CCF-07377655, CCF-0916042, and CCF-1218095.

N. Roehner (University of Utah)

Generating SBML Models from SBOL

August 20, 2014

Acknowledgments

Chris J. Myers

Nathan Barker

Kevin Jones

Tyler Patterson

Hiroyuki Kuwahara

Andrew Fisher

Curtis Madsen

Scott Glass

Nam Nguyen

Jason Stevens

Leandro Watanabe

Zhen Zhang

This work is supported by the National Science Foundation under Grants No. 0331270, CCF-07377655, CCF-0916042, and CCF-1218095.

N. Roehner (University of Utah)

Generating SBML Models from SBOL